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Abstract. Newly introduced generalized Poisson structures based on suitable skew-symmetric
contravariant tensors of even order are discussed in terms of the Schouten—Nijenhuis bracket.
The associated ‘Jacobi identities’ are expressed as conditions on these tensors, the cohomological
contents of which is given. In particular, we determine the linear generalized Poisson structures
which can be constructed on the dual spaces of simple Lie algebras.

1. Introduction

In 1973 Nambu [1] proposed a generalization of the standard classical Hamiltonian
mechanics based on a three-dimensional ‘phase space’ spanned by a canonical triplet of
dynamical variables and on two ‘Hamiltonians’. His approach was later discussed by Bayen
and Flato [2] and, e.g., in [3-5]. Recently, a higher-order extension of Nambu’s approach,
involving (n — 1) Hamiltonians, was proposed by Takhtajan [6] (see [7] for applications).
This approach, which includes Nambu’s mechanics as a particular case, has the property
that the time derivative is a derivation of th¢h-order Poisson bracket (PB) because the
expression of this fact, which involve@ + 1) terms, is the same as the ‘fundamental
identity’ [6] which generalizes the Jacobi identity of the ordinary= 2 case. Closely
related to Hamiltonian dynamics is the study of Poisson structures (PS) (see [8-10]) on a
manifold M.

Recently, a different generalization of PS has been put forward [11]. In contrast to those
of Nambu and Takhtajan, the dynamics is associated with generalized Poisson brackets
(GPB) necessarily involving an even number of functions. The aim of this paper is to
discuss these new generalized Poisson structures (GPS) further and, in particular, to exhibit
the cohomological contents of the examples provided (for the linear GPS) on the dual
spaces of simple Lie algebras. The key idea of the new GPS is the replacement of the
skew-symmetric bivecton defining the standard Poisson structure by appropriate skew-
symmetric contravariant tensor fields of even ordé#”. For a standardp = 1) PS, the
property which guarantees the Jacobi identity for the PB of two functions on a Poisson
manifold may be expressed [8, 12] a&,[A] = 0, whereA = A® is the bivector field
which may be used to define the Poisson structure and s the Schouten—Nijenhuis
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7994 J A de Azafraga et al

bracket (SNB) [13, 14]. Thus, a natural generalization of the standard PS may be found
[11] using A®”, and replacing the Jacobi identity by the condition which follows from
[A@P AGP] = 0. The vanishing of the SNB oA @” with itself generalizes the Jacobi
identity in a geometrical way that is different from [1, 6]: our GPB involveegennumber

of functions, whereas this number is arbitrary (three in [1]) in earlier extensions.

The geometrical content of the theory becomes especially apparent when the linear GPS
on the dualgG* of simple Lie algebrag are considered, since these automatically provide
us with solutions of the generalized Jacobi identities (GJI) that our Poisson structures must
satisfy. In fact, since the Jacobi identity or its generalizations constitute the only essentially
non-trivial ingredient of any PS (the skew-symmetry and the Leibniz rule are easy to satisfy),
it is important to have explicit examples which satisfy them. In our linear GPS, the solution
to the GJI has a cohomological character: the different tens&#8 that can be introduced
are related to Lie algebra cocycles.

2. Standard Poisson structures

Let us recall for completeness some facts concerning standard P37 lbet a manifold
and 7 (M) be the associative algebra of smooth functionsin

Definition 2.1 (PB). A Poisson brackef-, -} on F(M) is a bilinear mapping assigning to
every pair of functionsf1, f> € F(M) a new function{ 1, f>} € F(M), with the following
conditions:

(a) skew-symmetry

{f1, fal = —{f2, f1}, (2.1)
(b) Leibniz rule (derivation property)

{f. gh} = g{f. h} +{[. g}h, (2.2)
(c) Jacobi identity (J1)
SAI{f1, {fo. f31} = {f1. {fo. 31} + L2 (s AN} + (s {1, fo)} =0 (2.3)

M is then called &oisson manifold Because of (2.1), (2.3) the spa€&M) endowed with
the PB{-, -} becomes an (infinite-dimensional) Lie algebra.
Let x/ be local coordinates ot ¢ M and consider a PB of the form

. 0 .
{f(x), ()} = 0 (x)3; fkg . 9 = R jok=1....n=dmM. (2.4)

Thenw/ (x) defines a PB ifv”/ (x) = —w//(x) (equation (2.1)) and (equation (2.3))
’* ™ + 9™ + "™ !t = 0. (2.5)

The requirements (2.1) and (2.2) indicate that the PB may be given in terms of a
skew-symmetric bivector fieldPpisson bivector A € A%(M) which is uniquely defined.
Locally,

A =300 A (2.6)

Condition (2.5) is taken into account by requiring,[A] = 0 [8, 12] (section 3). Them
defines aPoisson structureon M and the PB is defined by

{f. g} = Adf.dg) . f.geFM). 2.7)
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Definition 2.2. Let H(x) € F(M). Then the vector fieldy = i;y A (Wherei, A(B) =
A, B), a, B one-forms), is called &lamiltonian vector fieldof H.
From the JI, equation (2.3), it easily follows that

[Xr. Xul = X(1m)- (2.8)

Thus, the Hamiltonian vector fields form a Lie subalgebra of the Lie algéigid) of all
smooth vector fields oM. Locally

Xy (x) = o™ (x)(3; H(x))d ; Xu.f ={H, f}. (2.9)

We recall that the tenses’* (x) appearing in (2.4), (2.6) does not need to be non-degenerate;
in particular, the dimension of a Poisson maniféfdmay be odd. Only when has constant
rank 2 (i.e. it is regular) and the codimension (di — 2¢) of the manifold is zero does

A define asymplectic structure

3. Standard linear Poisson structures

A particular class of Poisson structures is that defined on the gtiaéthe Lie algebrag.

The case of the linear Poisson structures was considered by Lie himself [15, 16], and has
been further investigated recently [17-19]. Igte a real finite-dimensional Lie algebra

G with Lie bracket [, .]. The natural identificatiory = (G*)*, allows us to think ofG

as a subspace of linear functions of the ring of smooth functib@*). Choosing a basis
{ei}i_y 0f G, [ei, ¢j] = C{‘,ek, and identifying its elements with linear coordinate functions

x; on the dual spacé* by means ofs;(x) = (x, ¢;) for all x € G*, the fundamental PB on

G* may be defined in a natural way by taking

{xi,xj}gzcg‘jxk:wij(x), i,j,k=1...,r=dimg, (3.1)

since the Jacobi identity fo@{‘j implies that (2.5) is satisfied. Intrinsically, the BB .}¢
on F(G*) is defined by '

{f: 8}g(x) = (x, [df (x),dg(x)]) , [.g€F(G), xeg", (3.2)

where the one-forms in the bracket are regarded as linear mappingsr i@y ~ G* to
R and hence as elements @f Locally,

af 3g of dg
k _ k
lja 8 {fvg}g(x) xkclja a

The above PH., .}g (see [20]) is commonly called kie—Poisson brackeand defines a
Lie—Poissorstructure org*. It is associated with the bivector fieltl; on G* locally written
as

[df (x), dg(x)] = exC; (3.3)

1., 9 1
—Cixp— N — = —w;;0' N3’ 34
2C”xk 0x; 4 0x; 2 a (3.4)
(cf equation (2.6)), so that (cf equation (2.7));(df,dg) = {f, g}g. Then [Ag, Ag] =0
(cf equation (2.5)) leads to the Jacobi identity &rwhich may be written as

TAIt(CL o) = iRl co = 0. (3.5)

i1ip  piz 1i2i3 T j1j2 7 PJ3

Ag =

Note also that the Poisson bracket of two polynomial function§ois again a polynomial
function, so that the spad@(G*) of all polynomials onG* is a Lie subalgebra.
Let 8 be a closed one form of*. The associated vector field

Xp=iplg, (3.6)
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is an infinitesimal automorphism afg, i.e.
Lx,Ag =0, (3.7)

and [X;, X,] = X, (equation (2.8)); this is proved easily using that, g = {f, g}

and Ly,Ag = 0. It follows from (3.4) that the Hamiltonian vector fields; = i, Ag

corresponding to the linear coordinate functianshave the expression (cf equation (2.9))
ad

XizCiijka—, i=1...,r=dmg (3.8)
Xj

so that the Poisson bivector can be written as

1 d
Ag=—X; A —. 3.9
g > ox, (3.9)
Note that this way of writingAg is not unique. Using the adjoint representation of
G, (Ci)f‘j = C{‘j the Poisson bivectoAg may be rewritten as

B]
Ag=—=-X¢ A — Xc = x (CHY— ) . 3.10
G SXa A ox; ( a = x(Ci); 8xj> (3.10)

The vector fieldsX, provide a realization of ad in terms of vector fields og*.

4. The Schouten—Nijenhuis bracket

LetA(M) = GB;’:O A (M) (A® = F(M), n = dim M), be the contravariant exterior algebra
of skew-symmetric contravariant (i.e. tangent) tensor fiehalsltjvectorsor j-vectorg over

M. The Lie bracket of vector fields o may be uniquely extended to a@bilinear
bracket onn (M), the SNB, in such way that(M) becomes a graded superalgebra (see the
remark below). The SNB [13, 14] is a bilinear mapping(M) x AY(M) — APHI=L(M).

We start by defining the SNB for multivectors given by products of vector fields.

Definition 4.1. Let X1, ..., X,, Y1, ..., Y, be vector fields oveM. Then

[Xan---AX,, iA---AY,]

=D DX A K AX AXL Y AYIA Y A Y

4.1)

where [, ] is the SNB andX stands for the omission of. It is easy to check that (4.1)
is equivalent to original definition [13, 14].

Theorem 4.1.Let M = G be the group manifold of a Lie group, and let the above vector
fields X, Y be left-invariant (LI) (right-invariant (RI)) vector fields o&. Then the SNB
of LI (RI) skew multivector fields is also LI (RI).

Proof. It suffices to recall that ifX is LI, L;X =[Z, X] = 0 whereZ is the generator of
the left translations. O

Definition 4.2. Let A € A?(M) and B € AY(M), p,q < n, be thep- and g-vectors
(multivectors of orderp andg, respectively) given in a local chart by

1 .. 1 . .
A(x) = — AR ()0, A A D, B(x) = — B 1(x)dj, A A D, (4.2)
p: q!
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The SNB ofA and B is the skew-symmetric contravariant tensor fied B] € AP*4~1(M)

[A. B] [A, Bl Aee Ay

pg-1

T (ptq-D!
1

Kt Kyt i -
(AL Bt = L, AT B (4.3)
(=1 akpras
p!(q _ 1)| i1.dp 1o jg-1

wheree is the antisymmetric Kronecker symbol

Vil Jg— Q1.0
+ le .11,13VA1 r

T
.y = det| |- 44
5o )
The SNB is graded-commutative:
[A, B] = (-1 [B, A]. (4.5)

As a result, the SNB is identically zero # = B are of odd order (or evedegree
degre€A) = orderfA) — 1). It satisfies the graded Jacobi identity
(=D [[A, B]. C]+ (=D [[B, C], A] + (=D [[C, A, B] =0,  (4.6)

where(p, g, r) denote the order ofA, B, C), respectively (thus, ifA is of even order and
[A, A] = 0 it follows from (4.6) that i\, [A, C]] = 0).
Let A A B € APTI(M),

1 o
(AANB) = W(A A B)ll...l,7+!18i1 Ao A 8i/)+q ,
' (4.7)
(A A B)il...ip+q — '1 |ejl:ilmj',,y::Ajl...jl,Bj,,+1...jp+q ,
pig: v

and Ieta‘ € Aprq—1(M) be an arbitrary p+g —1)-form, o = (1/(p +q—1)!)ozi1...,-,)+q71dxi1/\
.- Adx'+-1, Then the well known formula for one-forms and vector fields(X, Y) =
Lyxw(Y) — Lyw(X) —ix yjo , generalizes to

isnpda = (—1)P1Mi4d(ige) + (—1)Pipd(iae) — ifa g . (4.8)
where the contractiom« is the (¢ — 1)-form
. 1 . 1 1 i1...0 J1 Jg—1
ira(c) = Ea(A, R irc = WFA POy iy jrejya XA Adxt o (4.9)

so that, on formsjgis = ianp. Whena is closed equation (4.8) provides a definition of
the SNB throughis za.
From the definition of the SNB it follows that

[A,BAC]=[A,B]AC+ (-1)P VB A[A,C], (4.10)

[AAB,C]=(—1)’AA[B,C]l+ (-1)"[A,C]AB. (4.12)
In particular, for the case of the SNB between the wedge products oféastor fields
[AANB,XANY]=—-AA[B,X]ANY+BA[A, XINY —BA[AY]AX

+AA[B,YIANX, (4.12)
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so that
[AANB,AANB]=-2AABAI[A, B]. (4.13)

For instance, ifA is given by (3.9), we may apply (4.12) to find that the conditian A] = 0
leads to the Jacobi identity.

Remark. It is worth mentioning that the SNB is the unique (up to a constant) extension
of the usual Lie bracket of vector fields (see also theorem 4.1) which makkesyeaded

Lie algebra of the (graded-)commutative algebra of skew-symmetric contravariant tensors:
degre€[A, B]) = degre€A) + degre€B). In it, the adjoint action is a graded derivation
with respect to the wedge product [21] (see equation (4.10)). To make this graded structure
explicit, it is convenient to define a new SNB, []’, which differs from the original one

[, ] by a factor(—1)?** on the right-hand side of (4.1), (4.3):

[A, B] := (=1)PTYA, B]. (4.14)
This definition modifies (4.5) to read
[A, B] = —(=1)P Ve D[B, A] = —(-1)*’[B, A (4.15)

wherea = degre€A) = (p — 1), etc. Similarly, equation (4.6) is replaced by
(=D A, BY', CT + (=D B, €, Al + (=D "*H[C, A]', B] =0, (4.16)
which in terms of the degredg, b, ¢) of A, B, C adopts the graded JI form

(=1)*[[A, B], CY + (=D™[[B, CY, Al + (=D’[[C, A]', B] =0. (4.17)

The definition (4.14) is used in [17-19, 21] and more adequately stresses the graded structure
of the exterior algebra of skew multivector fields; for instance, equations (4.15) and (4.17)
have the same form as in supersymmetry (see, e.g., [22]). In this paper, however, we shall
use definition 4.2 for the SNB, as in [8, 10, 14] and others.

Definition 4.3. A bivector A € A%(M) is called aPoisson bivectornd defines a PS oW
(and a Poisson bracket gi(M) x F(M)) if it commutes with itself under the SNB

[A,A] =0 (4.18)

(for the case of linear PS this is equivalent to the classical Yang—Baxter equation). Two
Poisson bivectorg\;, A, are calledcompatibleif the SNB between themselves is zero,

[A1, A2] =0. (4.19)

The compatibility condition is equivalent to requiring that any linear combinati®omn-w A,
be a Poisson bivector.

5. Generalized Poisson structures

Since equations (2.1) and (2.2) are automatic for a bivector field, the only stringent condition
that aA = A® defining a PS must satisfy is the Jacobi identity (2.3) or, equivalently,
(4.18). It is then natural to consider generalizations of the standard PS in termsanf 2
operations determined by skew-symmetrje-2ector fieldsA@?, the casep = 1 being the
standard one. Since the SNB vanishes identically'ifis of odd order (equation (4.5)),
only [A’, A'] =0 for A’ of even order (oddiegreg will be non-empty.

Having this in mind, let us first introduce the generalized Poisson bracket (GPB).
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Definition 5.1. A generalized Poisson brackét -, ..., -, -} on M is a mappingF (M) x 2, X
F(M) — F(M) assigning a functiori f1, f, ..., fo,} to every setfy, ..., f2, € F(M)
which is linear in all arguments and satisfies the following conditions:

(a) complete skew-symmetry ifi;

(b) Leibniz rule:V f;, g, h € F(M),

{f17 f27 tee f2p711 gh} =8 {fls f2’ RN f2pfl7 h} + {fls f27 cees prflv g}h 5 (51)
(c) generalized Jacobi identity’ f; € F(M),
1 1
m@ Alt {fL f2, ceen f2p—1, {f2pa ceen f4p—1}} =0. (5-2)

Conditions (a) and (b) imply that our GPB is given by a skew-symmetric multiderivative,
i.e. by a completely skew-symmetricp/ector field A®” e A2?(M). Condition (5.2)
(different from the generalization in [1, 6]) will be called tlyeneralized Jacobi identity
(GJl); for p = 2 it contains 35 terrﬂs(cff,’j in the general case). It may be rewritten
as [A®P, A@P] = 0 which, due to (4.5), is not identically zero and gives a non-trivial
condition; A®? defines a GPB. We shall see in section 8 that in the linear case our
generalized PS are automatically obtained froomstantskew-symmetric tensors of order
2p + 1. Clearly, the above relations reproduce the ordinary case (2.1)—(2.8)%ot. The
compatibility condition in definition 4.3 may be now extended in the following sense: two
GPSAY” andAY on M are calleccompatibleif they ‘commute’, i.e. if A%, A% = 0
(of course, ifp # g the sum ofA(fp) and A(zzq) is not defined).

In local coordinates the GPB has the form

(A0, f2(0), ..o, fop(X)} = @)y sy, (DI L2 oo 072 o, (5.3)

wherew;, ;,.. j,, are the coordinates of a completely skew-symmetric tensor which, as a result
of (5.2), satisfies

Alt (wjljZ---jZP—lk 8k a)jzp___jAPA) = O (54)

1 Explicitly, the p = 2 GJI has the form

{f1, f2, f3.{fa, f5, fo. [73} — {fas f2, 13, {f1. fo. fo 73} — {1, fa, 13, {f2, /s, fe. f2}}

—{f1, f2, fa, {Sf3. fo, fo. S1Y} — A S5, f2, f3, {fa, J1, Jo. S2}} — {S1, /o, f3. {4, f2, f6, f7}}
—{f1, f2, f5. {fa. f3, fo. f13} — {Sfe. f2, f3, {fa, fo. f1. 23} — {Sf1, fe. f3. {4, f5. f2, f7}}
—{f1, f2, fo. {fa fo, f3, S} = {7, f2, f3. {Ja. fo. fo. 1Y} — {1, f7. f3, {4, f5. f6. f2}}
—{f1. f2. f1. {fa. /5. fo. f31} + {/a. f5. f3. {f1. fo. fo f2}} + {fa. f2. f5.{f1. f3. fe. f2}}
H /1, fa [, {f2. f3. fo. [} +{fa. fo. f3. {f1. f5. fo. f}} + {4, f2. fe. {1 /5. /3. f21)
Hf1, fa, fo. {f2, f5, fa, f21} + {fa f7, f3.Uf1, f5, fo, f23} + {fa, fo, f2. {f1, /5, fo. f31)
Hf, fa, fr. 2. fo. fo. 31} + S5 fo. f3. {fa, f1, fo. 1} + S5, f2. fo. {fa. fa. f3, f21)
H 1, fs. fo. {fa. fo. f3, [} +{ S5, f7, f3. {fa, f1. fo. S}y + {5, f2. f1. {/a. f2. f6. f3}}
Hf1. fo, 7. {fa. f2. fo. f31} +{fe. f7. f3. {fa. f5. f1. f2}} + {fe. fo. f7. {fa. f5. f1. f3}}
H /1, fe. f1.{fa. fo. f2. 33} = {fa. f5, fo. {f1. f2., fa. f}} — {fa. f5. f2. (S f2, fe. fa})
—{fa, fo, f1. {1, f5. f2, f3} =S5, fo. f7. {fa, f1. f2, f3}} = 0.
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Definition 5.2. A skew-symmetric 2-vector fieldA®” e AP (M), locally written as

A(ZP) — W), ja, afl A A ajZP , (55)

2p)!
defines ageneralized Poisson structure iffA®” A©@P)] = 0, which reproduces
equation (5.4).

6. Generalized dynamics

Let us now introduce a dynamical system associated with the above generalized Poisson

structure. Namely, let us fix a set @p — 1) ‘Hamiltonian’ functionsHy, Hy, ..., Hop_1.
The time evolution of;, f € F(M) is defined by
x] = {Hla""Hzp—J.?xj} ’ f = {Hlv"'9H2p—17 f}' (61)

Definition 6.1. The Hamiltonian vector fieldassociated with th€2p — 1) Hamiltonians

Hy, ..., Hp, 1 is defined byXy, . b, , = iamna-.ndi,, A- ThUs,

.....

(aHnndHyy N)j = [ AdHLA - NdHzpg, dX;)

2p—-1

= A(dH]_, cees dHZp_]_, de) ) (62)

5 = Xj = Xty Hyyr)j = Oiyeigy1j9 Hy - 0% Hop g (6.3)

.....

Definition 6.3. A function f € F(M) is aconstant of the motioif (6.1) is zero.

Due to the skew-symmetry of the GPB, the Hamiltonian functiéhs. .., Hy,_, are
all constants of the motion but the system may have additional bxgs. ., h; k > 2p.

Definition 6.4. A set of functions(f1, ..., fi), k > 2p is ininvolution if the GPB vanishes
for any subset of 2 functions.

Let us also note the following generalization of the Poisson theorem [23].

Theorem 6.1. Let fi,..., f;, g > 2p be such that the set of functiondy, ...,
Hap 1, fiy, . fi,,) IS ininvolution (this implies, in particular, thatthg, i =1,....¢
are constants of motion). Then the quantiti¢s, ..., f;, } are also constants of motion.

Definition 6.5. A set of k functionscy(x), ..., cc(x) (1 < k < 2p — 1) will be called a
set of k Casimir functionsif {g1, g2, ..., &2p—k, ¢1, ..., cx} = 0 for any set of functions

(81, 82, - - -, &2p—k)-

If one of the HamiltoniangH, ..., Hz,_1) is a Casimir function, then the generalized
dynamics defined by (6.1) is trivial. Also, if the set of Hamiltonians contains a Casimir
subset, the generalized dynamics will also be trivial (note thatiifand H, constitute
eacha Casimir subset, the two Hamiltoniatd,, H,) will also constitute another, but the
reciprocal situation may not be true).

Each Casimirk-subset(ci1(x), ..., cx(x)) determines invariant submanifolds aff
through the conditions;(x) = ¢; (¢ = 1,...,k). The maximalK-subset determines an
invariant submanifold of\f of minimal dimension, dini — K, which we may call phase
space. Using now the notion of support of arskew multivector [24] as the subspace of
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the space of vector fields generated by the contraction of the multivector with an arbitrary
(m — 1)-form, we make the following conjecture.

Conjecture. The tangent space to the phase space at a paind/ is the support ofA (x)
at that point.

Remark. It is well known that the standard Jacobi identity betwegn f> and H is
equivalent tod{f1, fo}/dt = {f1, f2} + {f1. f2}; thus, d/dt is a derivation of the PB.

The ‘fundamental identity’ for Nambu mechanics [1] and its further extensions [6] also
corresponds to the existence of a vector fiBlg, 4, , which is a derivation of the Nambu
bracket. In contrast, the vector field (6.3) above is not a derivation of our GPB. It should

be noted, however, that having an evolution vector field which is a derivation of a PB is an
independent assumption of the associated dynamics and not a necessary one. Nevertheless,
the following theorem holds.

Theorem 6.2. Let Hi, ..., Hy,—1 be the ‘Hamiltonians’ governing the time evolution
by (6.1) and letfi,..., fo, a set of 2 functions such that any subse€ff,, f;,,
e figya» Hjys oo Hjp, ) IS in involution. Then

d . .
E{flv"'?pr} = {flv f21 "'7f2p}+"'+{flv "'7f2p71’ f2p}' (64)

Proof. It suffices to check that (6.1) in (6.4) leads to an identity on account of the generalized
Jacobi identity (5.2). For the cage= 2, for instance, the condition of the theorem (see
the previous footnote) states that any GPB involving two Hamiltonians and two functions
or one Hamiltonian and three functions is zero.

Example. It is well known that Euler's equations describing the free motion of a rigid body
around a fixed point are Hamiltoniawy, = {H, x;}, where H o< a1x? + axx? + azx3 (where
a; are the principal moments of the body) and the (linear) PS is defingd: hy;} = ¢;; kxy
so thatx; o ¢;;*9' Hxy, i, j, k = 1,2, 3. The extension of this situation to the motion in a
(2p + 1)-dimensional space provides an example of our GPS. Let the evolution equations
be given in terms of2p — 1) HamiltoniansHy, ..., H»,_1 (the above case corresponds to
p=1) by
Xj = €y iy, 1k Hy - 07 Hop_1x* i,j,k=1...,2p+1. (6.5
These equations have the Hamiltonian form (6.1) if the PS is the linear one defihed by
{Xigs Xigs «+ s Xig)} = €1y ig kX' = iy iy, (X) . (6.6)

Due to the form ofw,;, ;, (x), it is clear that the GJI (5.4) is trivially fulfilled, since

it will always involve the antisymmetrization of repeated indices. Thus, equation (6.6)
defines a linear GPS reproducing (6.5); clearly tBp — 1) Hamiltonians are constants

of the motion. As in the three-dimensional analogue, the function determining?he
spherecy, = x2 + -+ + x§p+l is a Casimir function (and a constant of motion). Indeed
(definition 6.5),

{fl, o f2p717 xf + -4 x§p+1} — Zwil...izl,ailfl e aizpflfzpilxizn (67)

which is zero for allf’s on account of (6.6). The trajectory is thus the intersection of the
surfacesH; = constant( = 1,...,2p — 1) andc,, = constant.

1 Itis worth mentioning that the completely antisymmetric tensor of otder 1) in a (n + 1)-dimensional vector
space gives rise [25] to a Nambu tensqrﬂiuinﬂx’ﬂl of ordern (i.e. a tensor satisfying the ‘fundamental identity’

of Nambu mechanics [6]), so thai;, ;,, (x) above is also a Nambu tensor.
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Equations (6.5) are not quadratic it in general and so they do not coincide with
the standard Euler equations for the rotation of a higher dimensional rigid body. They
become quadratic whe#ly, ..., Hy,_» are linear andH»,_1 is a quadratic function of
the coordinates, but in this case they reduce to the standard Euler equations in the three-
dimensional space determined by the intersection offthe- constant{=1,...,2p — 2)
hyperplanes.

7. Generalized Poisson structures and differential forms

Let us now rewrite some of the previous expressions in terms of differential forms. First
we associatén — k)-forms « with k-skew-symmetric contravariant tensor fieldson an
n-dimensional orientable manifolsf by setting

apN = lA/’L ’ (71)

whereu stands for a volume form ot (hence,a, depends on the choice of the volume
form ©). The mappingd : A — a, Yyields an isomorphism betwednskew multivectors
and(n—k)-forms. For aA given by the exterior product @fvector fieldsA = X3 A---A X
(see equation (4.9)),

(iA/,L)(Yl, ey Ynfk) = /,L(X]_, ey Xk, Y]_, ey Y,,,k) . (72)
Locally, if for exampleA = w'/3; A 9; andp = dx* A --- A dx", equation (7.2) gives
ap = Z:(—l)“’-’urla)ijdx1 A-oedxi-odxd - Adx" , (7.3)

i<j

wheredx’ stands for the omission afx'.
For vector fieldsX, Y,

ix,y) = ixdiy —iydix +ixiyd — dix,y . (7.4)
Similarly, for two bivector fieldsA;, As,

iAnAn] = iaydin, +in,din, —ingin,d —dipnn, - (7.5)
In general, for any two skew-symmetric multivectots B of order p, ¢ acting on forms
we have
itap] = (VP dip + (—D)Pigdig — (—1)Pigigd — (—1)P digng , (7.6)

from which we find that (7.5) remains valid for any two skew-symmetric multivectors
and A, of evenorder (on a(p + ¢ — 1)-form «, equation (7.6) reduces to (4.8) since
A A B € APT1), Equation (7.5) now leads to the following theorem which generalizes that
in [17] to the arbitrary even-order case:

Theorem 7.1.A A defines a GPS if and only if

2indopn =doapny - (7.7)
Two GPSA;, A, are compatible if and only if

doapan, = indop, +in,doy, . (7.8)

1t Equation (7.6) is to be compared with the standard formula for vector figlds = [Lx, iy] = ixdiy —iydix +
ixiyd + dixiy to which it reduces fopp = 1 = g (on forms,isip = (—1)P4igis andignp = (—D)Pligpa =
(=1 P4izig). One could introduce a Lie ‘derivativé’ 4 with respectd € A” (M) and rewrite (7.6) in a form similar
to the vector field case, namely ) = [La, ig], where L, = iad+ (=074 (Ls 1 A" — A"PTL and thus
it is a derivative only ifA is a vector field) and the bracket [] is defined by [L 4, ig] := (—1)? PtV L ig—ipLy.
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The isomorphism defined by suggests that it should be composed in terms of the
differential operatorgl, Lx, ix available on forms, so that the properties of the Schouten
bracket can be stated in terms of differential forms. As is well known, we have

Lyxpu =diviX)u =dixun , (7.9)

d(ixayn) =iy, xjit +ixdiyp —iydixp . (7.10)
Thus, definingD = ¥t od o W, for the vector fieldsX, Y we get

D(X) =div(X) , (7.11)

DX AY)=—div(X)Y + Xdiv(Y) — [X, Y]. (7.12)
For contravariant, skew-symmetric tensor fieldg A, of arbitrary even order we obtain

D(A1 A Ap) = D(A1) A Ao+ A1 A D(Ap) — [A1, Aj] (7.13)
and in the general case we have

D(A A B) = (—=1)YD(A) A B+ A A D(B) — (-1)PT[A, B]. (7.14)
Hence we conclude that i is of arbitrary even order and defines a GPS,

D(A AA)=2A A D(A). (7.15)

We may call a GPS\ closedif D(A) = 0 (which impliesD(A A A) = 0). This is clearly
equivalent to the fact that the form, (and hencex,.,) is closed. As mentioned, this
definition depends op so that if u is replaced byfu, A may no longer be closed.

8. The Schouten—Nijenhuis bracket, GPS and cohomology

Let A®” be a (2p)-skew-symmetric multivector defining a GPS as in definition 5.2.
Using equation (4.6) it follows that the mappidge» : B +— [A, B], Spen @ AY(M) —
A2P+a=1(p1) is nilpotent since 4, [A, B]] = 0. We then have the following theorem.

Theorem 8.1Let a GPS be defined by?”. The mappind,c» : B — [A, B]is nilpotent,
812\(2,,, = 0. The operatoB, e, satisfies (see equations (4.10), (4.6))

Spen(BAC) = (bpaenB) AC + (=1)?B A (8penC) (8.1)

(SA(Zp)[B, C] = _[8A(2p)B, C] - (_1)61[3’ (SA(ZP)C] . (82)

As a result,5,e» defines an odd degree cohomology operator; the resulting cohomology
will be calledgeneralized Poisson cohomologiy particular, forp = 1, Sy : AY(M) —
A1 (M) defines the standard Poisson cohomology [8]; see also [21].

Let us now turn to linear GPS. L&t be the Lie algebra of a simple compact gratip
In this case the de Rham cohomology ring on the group mandold the same as the Lie
algebra conomology ring/; (G, R) for the trivial action. In its Chevalley—Eilenberg version
[26] the Lie algebra cocycles are represented by bi-invariant (i.e. left- and right-invariant
and hence closed) forms dafi (see also, e.g., [27]). The linear standard PS defined by
(3.4) is associated (see [11]) with a non-trivial three-cocycleGoand [A®, A®] = 0
(equation (3.5)) is precisely the cocycle condition. This indicates that the linear generalized
Poisson structures ofi* may be found by looking for higher-order Lie algebra cocycles.
Let us now show that each of them provides a GPS.

The cohomology ring of any simple Lie algebra of rahils a free ring generated by
[ (primitive) forms onG of odd degreq2m — 1). These forms are associated with the
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primitive symmetric invariant tenso¥s,. ;, of orderm which may be defined of and of
which the Killing tensor;,;, is just the first example (and thllﬁ;"(g, R) # 0 for any simple
Lie algebra). As aresult, it is possible to associat@a— 2) skew-symmetric contravariant
primitive tensor field linear in; to each symmetric invariant polynomia|_;, of orderm.
The casen = 2 leads to theA® of (3.4), (3.9). For thed; series(su(l + 1)), for instance,
these forms have order B, ..., (2 + 1); other orders (but always including 3) appear for
the different simple algebras (see, e.g., [27]). et be a basis ofj. The bi-invariance
condition

Zw(e,l,.. ler,ei], ..., e,)=0 (8.3)

reads, in terms of the coordinates. ;,, = w(e;, ..., ¢;,) of the skew-symmetric tenses
on G (or, equivalently, Llg-form » on G),

o o a —
Cliy@aiy...iy + CljyOisais..iy T+ Cj iy iy 1o = 0

(8.4)
X:CWv 11 l\p lq =O
The bi-invariance condition may also be expressed as
€ Clwpp., =0, (85)

on account of the skew-symmetry of Using the Killing metric this leads to
J1eeeJi
Eill...iqch!ipijz...jq =0. (8.6)
Let w be a Lie algebraj-cochain (i.e. a skew-symmetrigtensor onG or LI g-form
on G). The coboundary operator for the Lie algebra cohomology is given by the following
definition.

Definition 8.1a (coboundary operator).

g+1
. s+ ~ ~
(sw)(eiys -, €)= Z D" w(ei, e, ey ennnliyyns i€y e €G.
s,t=1
s<t
(8.7)
Thus, in coordinates,
q+1
_ s+t ~P ~ ~
(S®)iy.iysy = Z (=1 Cixi,wpil...i.,....i,...iﬁl
s<t
1 9+t
s+t iz P
Z( 1) ll/ lejz pi1.. lv lr g4l
3<t
q+1 1
a+t Jij2 P J3-- Jq+1
Z( 1) zz, lejz (CI )| Pi...i.. t, tquPJs Jg+1
S<I
1 1 & 1 J
— - ,0 s+1+ j1j2 13 q+1
s,t=1

s<t
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This provides the equivalent definition:
Definition 8.1b. The action of the coboundary operator og-aochainw is given by

1 1 o) i
LT el swo=0 for ¢ >r=dimg. (8.9)

(Sa))i1~~~iq+l = _é (q _ 1)| 1.1 jljzijB---qurl ;

As is well known, the invariance condition (8.3) determines a Lie algebra cocycle since,
for each fixedj;, the antisymmetric sum oveg, ..., j, iS zero on account of (8.3). The
Poisson structure (3.8) is associated to the structure constants and hence to a three-cocycle.
In order to obtain more general structures, we need the expression @nihe 1)-cocycle
associated with an ordet symmetric tensor oi§;. This is done in two steps, the first of
which is provided by the following lemma.

Lemma 8.1.Let k;, ;, be an invariant symmetric polynomial ghand

~ . i im—1
Dpja...jon-20 += kil"'imfldcplj'z e Cjszsjszz : (8'10)
Then the odd-orde¢2m — 1)-tensor
e J2eJom-2 ~
Dply..dom—20 = €[, I, » Ppjo...jon—20 (8-11)

is a fully skew-symmetric tenspr
Proof. Form = 2, the skew-symmetry ab,j,, = kilaCi}jz is obvious. In general,

Ci1 .. Cim—l

J2-Jam-2 ~ jzmjz»z-zk e e
n—3J2m—

€l doyy o Ppjzcjon—r20 = €y I 5 Kir.iy_10

m—1

_ _J2eJom-2 2 : _ i1 i i vimel

= €yl |: kPi2~~~ixi1---iz)z—10Cjzi; + kﬂl?""mlllcj20i| Cj3j4 Cj2m—3j2m—2
s=2

_ JJeedome2y, Al i ~imed

= €lydpys kp’Z""mflllcsz Cj3j4 Cj2m—3j2m—2

L Jedam-2y, i imel a2

- €ly...lop 2 klllZ‘“’mflpCsz Jom-3jom-2 Clo..lo—o PO j2on-2p >

where the invariance of the symmetric tengohas been used in the second equality, the
Jacobi identity in the third and the symmetryfofn the fourth. Sincev,j, . j,. .- IS skew-
symmetric in(p, o) it follows thatw;,. ;,, , is a fully skew-symmetric tensor. O

We may then state the following theorem.

Theorem 8.2.The skew-symmetric tensas;, ;,, , on G (or LI (2n — 1)-form on G) of
(8.11) is a(2m — 1)-cocycle for the Lie algebra cohomology.

Proof. Applying equation (8.9) to (8.11) and using (8.10), it follows that

1 1o fom S ! I
(Sw)ii---iZm = _Z(T_Z)' ljllljzz ‘]/;]2 ;:...jzzmm,ik1112---lnx—1j2/11 Cpls‘a e S’;;—IZSZm—l
_ (2m - 3)! J1J253-S2m -1 J2m c’ Cll . Cl’”’l k i
- 2(2m _ 2)! i1...i2m J1j2 7 ps3 Som—28om—1"11l2- -1 jom
=0
by the Jacobi identity (3.5) in the two first structure constants (indjgeg, s3). O

T The origin of (8.11) follows from the fact that given a symmetric invariant polynokgjal,, ong, the associated
skew-symmetric multilinear tensas;;. i, , is

Wiy eesing )= D T k(esiy, esip]s [estins esip]s -+ [estian )+ €stian )]s €stizn 1)
SES2m-1)

wherexn (s) is the parity sign of the permutatione S,—1).
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Lemma 8.2.Let w;, ;,, ¢ 0dd, be an skew-symmetric tensor associated with an invariant
symmetric polynomial as above. Then

e
ill...i: Cﬁjzijs-..qu =0. (8.12)

Proof. By equations (8.11) and (8.10)

€

1 ]1]1 P ]3.,.[ ~ jljzlg...ll P 5 )
(q _ 2)! i1~~~iql jljzejs---jz Dply...dgv = i1...0g /lejzcﬂllz e 14,,11lqk31"-fl7"
wherep = (¢ — 1)/2, which is zero on account of the Jacobi identity fer j», /5. O

The possible cocycles on the different simple Lie algebras are determined by the
symmetric invariant polynomials that may be defined on them, which in turn are in
one-to-one correspondence with the non-trivial de Rham cocycles, which exist on the
corresponding compact group manifolds. Using the above constructions, we may now
introduce higher-orderx{ 2) contravariant skew-symmetric tensors which have zero SNB
between themselves.

Let us now apply the results of section 8 to compute the SNB of two contravariant
skew-symmetric tensor@ and 2’ obtained from Lie algebra cocycles,

1 , . 1 o .

Q= —wi ;i "X A AT, Q= w,  “x A A (8.13)
pl ; q| Ji-Jq

wherex® € G*. Using the Killing metric to raise and lower indices, equation (4.3) gives

1 J1--Jp+g-1 / v

/ — . .
[Q’ 2 ]’1---’ﬂ+4*1 - { (P _ 1)!4! Ei]."'ipi»qfl wV/l---Jﬂfl‘ijp---J'p+q—1

Y
) eIty 1) ”}x”‘. (8.14)

plqg — 1! i1enipig—1 PVipiiejprg—10Lit-Jp
We now state the theorem which gives all the linear GPS on simple Lie algebras.

Theorem 8.3.Let G be a simple compattalgebra, and let» andw’ be two non-trivial Lie
algebra(p + 1)- and (¢ + 1)-cocycles obtained from the associate? + 1 andg/2 + 1
invariant symmetric tensors @h Then the associated skew-symmetric contravariant vector
fields Q and 2’ have zero SNB.

Proof. Since bothQ € AP(G), @ € A1(G) in (8.14) have arbitrary even order, both
terms have the same structure. It is thus sufficient to check that one of them is zero. By
equations (8.10) and (8.11) the first term gives

Jiedprg-1 o v
iodprg—1 VL Jp=1¥" ) fptg-1

_Jtedprg-1 _ledpe1 s Sp/2 / v
- il...i,,+q_1 jl...jp_lcvll et C[,,_zll,_lkSL~~517/2‘¥wjp...j1,+q,1
L. dp-1jpejprq—1 s Sp/2 / v
— _ | p=1Jp---Jp+q 1 » —
=p—-Dle, " " Co, -G Kisya® o =0, (8.15)
which, using (8.6) in the last equality, is zero. O

Since all the even-order skew-symmetric multivector fiegldassociated with the odd-
order Lie algebra cocycles have zero SNB between themselves we find the following
corollary.

1 Note. The requirement of compactness is introduced to have a definite Killing—Cartan metric which then may
be taken as the unit matrix; this is convenient to identify upper and lower indices.
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Corollary 8.1. Let G be a simple compact algebra, and &gt ;,

symmetric polynomial of ordes:. Then the tensow,,,. 1, .o
1
(2m — 2)!

Q(Zm 2) wll...lzm,gq-xa'all A

N L
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be a primitive invariant

(8.16)

obtained from the cocycle (8.11), defines a linear GPE .om particular (cf equation (3.1))

o
{Xil, Kigy eovs xi%_z} = Wiy...igpy_p Xo >

(8.17)

wherew;, ;, ,° are the ‘structure constants’ defining the Lie alget®a — 1)-cocycle.
Let Q be as in equation (8.13) and such that it defines a linear GPS. Then we have the

following lemma.
Lemma 8.3.The operatolg, : AY(G) — AITP~1(G) defined by

1 1 jl---jp+q—1 . VB

(02B)iy...ipry 1 = Pl (g — Dt Sairras Ojr...j,

Vjp+ieJprg-1 0

(8.18)

where Q@ is an even skew-symmetric contravariant tensor defining a linear GPS, is

nilpotent, 33 = 0.
Proof. From the definition (8.18) 0dq,

1
2 L _ Jiedoprg-2
(893)11...lzl,+q,2 — '(p + q— 2)| Ezl d2ptg-2 w]l Jp

k1. kpig-1

1 o
N\ pl(g = 1)l Wrrrsaprg-2hany Boky i1 kgt

1 r+q-1

T hptq -2l - D! & iz
ki kyodpig_1
ejl)Jrl»--ij:qu

o
Wiy k, B

Uk,,+1...kp+q,1

1

Y+l Ji- ]pkl---k ckpyiaikpyga o
.zl.[D D e iy @)y,
(p) ¢g—-1

p+q-1

Z ( 1)Y+l J1-- ]Zp+q ZCL)

.kY

s+l Jie-Jpki. .k p~~~k wkprg-1 ks o
+ E ()€ s 0jy. g, | Oky ke, Bokyay. kyegs

s=p+1

= # Jiedpkiekpirq—2
fd (p!)Z(q _ 1)! il---i2p+472

¢—1 Jreeedpkokprg—2
m il"'i27r+(,,2p q a)jl...jppwkl...kpaB

P o
Wj...j," Opky..dep 1 Bok,...

Upkp+1~~~k,>+q—2

=0, (8.19)

since in the last equality the first term is zero on account of (8.15), and the second one

vanishes sincey is even andB is skew-symmetric in(p, o).

O

In view of the above lemma and equation (8.14), theorem 8.3 has the following corollary.
Corollary 8.2. If Q andQ’ (of even orderp and p’) define two linear GPS, their SNB may

be written as
[Q, Q] =002 + 009
In particular,do Q2 = 0 since2 is a cocycle fordg.
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Let us remark that the linear GPS given by the Lie algebra cocycles provide explicit
examples of a non-decomposable (i.e. not given by the skew-symmetric product of single
vectors) GPS. In contrast, and as conjectured in [25], it has recently been shown [24] that
all Nambu-type PS are decomposable (see also [28] for more details on this point). As an
example of our theory consider the GPS which may be constructed @y defined by

1 a a

1 ...
@ _ = o L e T _J2J3a k1 k2
A" = 4!0)11121314 Xo axil A A axi4 s Wpizizigo = 26,‘21‘31'4 dklkzacpjzcj3j4 s (820)

where thed;;; are the constants appearing in the anticommutator of the Gell-Mann
matrices,{A;, A;} = 38;;13 + 2d;jxhr. It may be checked explicitly thatA[®, A®] = 0
(see [11] for details). Other examples may be given similarly.

9. Conclusions

In this paper we have established the mathematical basis of a new type of generalized
Poisson structures. From a physical point of view, a more detailed investigation of the
generalized Hamiltonian dynamics presented here and of its possible applications is needed;
clearly, one would like to have more examples besides the simple one provided in section 6.
From a mathematical point of view, the linear GPS are also interesting since, when applied
to the case of the simple Lie algebras as in the example above, they provide the equivalent
of the higher-order Lie algebras [29] which can be defined on any simple Lie algebra
associated with its non-trivial cohomology groups. This produces a set of examples (in fact,
infinitely many of them:/ GPS foreach simple Lie algebra of rank, of which the first

one is the standard Lie—Poisson structure (3.1) given by the structure cotistaritish
illustrate our linear GPS in a non-trivial way. The corresponding higher-order simple Lie
algebras [29] are in turn special cases of the strongly homotopy Lie algebras (see [30] and
references therein) which have been found to be relevant in closed string theory (see, e.g.,
[31, 32]) and in connection with the Batalin—Vilkovisky antibracket. Nevertheless, more
work is needed to see whether the proposed GPS, which are very appealing by virtue of
their geometrical contents, also have some direct physical applications.

We conclude here by saying that our analysis could be extended to Lie superalgebras
and super-Poisson structures in general by using an appropriate graded version of the SNB.
To this end, one first needs a theory of skew graded ‘super-multivector’ algebras, which to
our knowledge is lacking [33]. All these are possible directions for further research.
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1 This is in sharp contrast to the Nambu case, where only the structure constai(® @f) may serve as Nambu
tensors [25], since those of the other simple algebras do not satisfy the ‘fundamental identity’ (see also remark 1
in [6]). An interesting question is whether the set of linear GPS based on higher-order Lie algebras and those of
the type discussed in the example of section 6 (which trivially satisfy the GJI) constitute all the possible linear
GPS.
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