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The Schouten–Nijenhuis bracket, cohomology and
generalized Poisson structures
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Departamento de Fı́sica Téorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, 46100-
Burjassot (Valencia), Spain

Received 16 May 1996, in final form 10 September 1996

Abstract. Newly introduced generalized Poisson structures based on suitable skew-symmetric
contravariant tensors of even order are discussed in terms of the Schouten–Nijenhuis bracket.
The associated ‘Jacobi identities’ are expressed as conditions on these tensors, the cohomological
contents of which is given. In particular, we determine the linear generalized Poisson structures
which can be constructed on the dual spaces of simple Lie algebras.

1. Introduction

In 1973 Nambu [1] proposed a generalization of the standard classical Hamiltonian
mechanics based on a three-dimensional ‘phase space’ spanned by a canonical triplet of
dynamical variables and on two ‘Hamiltonians’. His approach was later discussed by Bayen
and Flato [2] and, e.g., in [3–5]. Recently, a higher-order extension of Nambu’s approach,
involving (n − 1) Hamiltonians, was proposed by Takhtajan [6] (see [7] for applications).
This approach, which includes Nambu’s mechanics as a particular case, has the property
that the time derivative is a derivation of thenth-order Poisson bracket (PB) because the
expression of this fact, which involves(n + 1) terms, is the same as the ‘fundamental
identity’ [6] which generalizes the Jacobi identity of the ordinaryn = 2 case. Closely
related to Hamiltonian dynamics is the study of Poisson structures (PS) (see [8–10]) on a
manifold M.

Recently, a different generalization of PS has been put forward [11]. In contrast to those
of Nambu and Takhtajan, the dynamics is associated with generalized Poisson brackets
(GPB) necessarily involving an even number of functions. The aim of this paper is to
discuss these new generalized Poisson structures (GPS) further and, in particular, to exhibit
the cohomological contents of the examples provided (for the linear GPS) on the dual
spaces of simple Lie algebras. The key idea of the new GPS is the replacement of the
skew-symmetric bivector3 defining the standard Poisson structure by appropriate skew-
symmetric contravariant tensor fields of even order3(2p). For a standard(p = 1) PS, the
property which guarantees the Jacobi identity for the PB of two functions on a Poisson
manifold may be expressed [8, 12] as [3, 3] = 0, where3 ≡ 3(2) is the bivector field
which may be used to define the Poisson structure and [, ] is the Schouten–Nijenhuis
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7994 J A de Azc´arraga et al

bracket (SNB) [13, 14]. Thus, a natural generalization of the standard PS may be found
[11] using 3(2p), and replacing the Jacobi identity by the condition which follows from
[3(2p), 3(2p)] = 0. The vanishing of the SNB of3(2p) with itself generalizes the Jacobi
identity in a geometrical way that is different from [1, 6]: our GPB involve anevennumber
of functions, whereas this number is arbitrary (three in [1]) in earlier extensions.

The geometrical content of the theory becomes especially apparent when the linear GPS
on the dualsG∗ of simple Lie algebrasG are considered, since these automatically provide
us with solutions of the generalized Jacobi identities (GJI) that our Poisson structures must
satisfy. In fact, since the Jacobi identity or its generalizations constitute the only essentially
non-trivial ingredient of any PS (the skew-symmetry and the Leibniz rule are easy to satisfy),
it is important to have explicit examples which satisfy them. In our linear GPS, the solution
to the GJI has a cohomological character: the different tensors3(2p) that can be introduced
are related to Lie algebra cocycles.

2. Standard Poisson structures

Let us recall for completeness some facts concerning standard PS. LetM be a manifold
andF(M) be the associative algebra of smooth functions onM.

Definition 2.1 (PB). A Poisson bracket{·, ·} on F(M) is a bilinear mapping assigning to
every pair of functionsf1, f2 ∈ F(M) a new function{f1, f2} ∈ F(M), with the following
conditions:
(a) skew-symmetry

{f1, f2} = −{f2, f1} , (2.1)

(b) Leibniz rule (derivation property)

{f, gh} = g{f, h} + {f, g}h , (2.2)

(c) Jacobi identity (JI)

1
2 Alt {f1, {f2, f3}} ≡ {f1, {f2, f3}} + {f2, {f3, f1}} + {f3, {f1, f2}} = 0. (2.3)

M is then called aPoisson manifold. Because of (2.1), (2.3) the spaceF(M) endowed with
the PB{·, ·} becomes an (infinite-dimensional) Lie algebra.

Let xj be local coordinates onU ⊂ M and consider a PB of the form

{f (x), g(x)} = ωjk(x)∂jf ∂kg , ∂j = ∂

∂xj
, j, k = 1, . . . , n = dimM . (2.4)

Thenωij (x) defines a PB ifωij (x) = −ωji(x) (equation (2.1)) and (equation (2.3))

ωjk∂kω
lm + ωlk∂kω

mj + ωmk∂kω
jl = 0 . (2.5)

The requirements (2.1) and (2.2) indicate that the PB may be given in terms of a
skew-symmetric bivector field (Poisson bivector) 3 ∈ ∧2(M) which is uniquely defined.
Locally,

3 = 1
2ωjk∂j ∧ ∂k . (2.6)

Condition (2.5) is taken into account by requiring [3, 3] = 0 [8, 12] (section 3). Then3
defines aPoisson structureon M and the PB is defined by

{f, g} = 3(df, dg) , f, g ∈ F(M) . (2.7)
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Definition 2.2. Let H(x) ∈ F(M). Then the vector fieldXH = idH3 (where iα3(β) :=
3(α, β) , α, β one-forms), is called aHamiltonian vector fieldof H .

From the JI, equation (2.3), it easily follows that

[Xf , XH ] = X{f,H } . (2.8)

Thus, the Hamiltonian vector fields form a Lie subalgebra of the Lie algebraX (M) of all
smooth vector fields onM. Locally

XH(x) = ωjk(x)(∂jH(x))∂k ; XH .f = {H, f } . (2.9)

We recall that the tensorωjk(x) appearing in (2.4), (2.6) does not need to be non-degenerate;
in particular, the dimension of a Poisson manifoldM may be odd. Only when3 has constant
rank 2q (i.e. it is regular) and the codimension (dimM − 2q) of the manifold is zero does
3 define asymplectic structure.

3. Standard linear Poisson structures

A particular class of Poisson structures is that defined on the dualsG∗ of the Lie algebrasG.
The case of the linear Poisson structures was considered by Lie himself [15, 16], and has
been further investigated recently [17–19]. LetG be a real finite-dimensional Lie algebra
G with Lie bracket [. , . ]. The natural identificationG ∼= (G∗)∗, allows us to think ofG
as a subspace of linear functions of the ring of smooth functionsF(G∗). Choosing a basis
{ ei }ri=1 of G, [ei, ej ] = Ck

ij ek, and identifying its elements with linear coordinate functions
xi on the dual spaceG∗ by means ofxi(x) = 〈x, ei〉 for all x ∈ G∗, the fundamental PB on
G∗ may be defined in a natural way by taking

{xi, xj }G = Ck
ij xk = ωij (x) , i, j, k = 1, . . . , r = dimG , (3.1)

since the Jacobi identity forCk
ij implies that (2.5) is satisfied. Intrinsically, the PB{., .}G

on F(G∗) is defined by

{f, g}G(x) = 〈x, [df (x), dg(x)]〉 , f, g ∈ F(G∗), x ∈ G∗ , (3.2)

where the one-forms in the bracket are regarded as linear mappings fromTx(G∗) ∼ G∗ to
R and hence as elements ofG. Locally,

[df (x), dg(x)] = ekC
k
ij

∂f

∂xi

∂g

∂xj

, {f, g}G(x) = xkC
k
ij

∂f

∂xi

∂g

∂xj

. (3.3)

The above PB{., .}G (see [20]) is commonly called aLie–Poisson bracketand defines a
Lie–Poissonstructure onG∗. It is associated with the bivector field3G onG∗ locally written
as

3G = 1

2
Ck

ij xk

∂

∂xi

∧ ∂

∂xj

≡ 1

2
ωij ∂

i ∧ ∂j (3.4)

(cf equation (2.6)), so that (cf equation (2.7))3G(df, dg) = {f, g}G . Then [3G, 3G ] = 0
(cf equation (2.5)) leads to the Jacobi identity forG, which may be written as

1
2 Alt (C

ρ

i1i2
Cσ

ρi3
) ≡ 1

2ε
j1j2j3
i1i2i3

C
ρ

j1j2
Cσ

ρj3
= 0 . (3.5)

Note also that the Poisson bracket of two polynomial functions onG∗ is again a polynomial
function, so that the spaceP(G∗) of all polynomials onG∗ is a Lie subalgebra.

Let β be a closed one form onG∗. The associated vector field

Xβ = iβ3G , (3.6)
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is an infinitesimal automorphism of3G , i.e.

LXβ
3G = 0 , (3.7)

and [Xf , Xg] = X{f,g} (equation (2.8)); this is proved easily using thatLXf
g = {f, g}

and LXf
3G = 0. It follows from (3.4) that the Hamiltonian vector fieldsXi = idxi

3G
corresponding to the linear coordinate functionsxi , have the expression (cf equation (2.9))

Xi = Ck
ij xk

∂

∂xj

, i = 1, . . . , r = dimG (3.8)

so that the Poisson bivector can be written as

3G = −1

2
Xi ∧ ∂

∂xi

. (3.9)

Note that this way of writing3G is not unique. Using the adjoint representation of
G , (Ci)

k
.j = Ck

ij the Poisson bivector3G may be rewritten as

3G = −1

2
XCi

∧ ∂

∂xi

(
XCi

= xk(Ci)
k
.j

∂

∂xj

)
. (3.10)

The vector fieldsXCi
provide a realization of adG in terms of vector fields onG∗.

4. The Schouten–Nijenhuis bracket

Let ∧(M) = ⊕n
j=0 ∧j (M) (∧0 = F(M) , n = dimM), be the contravariant exterior algebra

of skew-symmetric contravariant (i.e. tangent) tensor fields (multivectorsor j -vectors) over
M. The Lie bracket of vector fields onM may be uniquely extended to anR-bilinear
bracket on∧(M), the SNB, in such way that∧(M) becomes a graded superalgebra (see the
remark below). The SNB [13, 14] is a bilinear mapping∧p(M) × ∧q(M) → ∧p+q−1(M).
We start by defining the SNB for multivectors given by products of vector fields.

Definition 4.1. Let X1, . . . , Xp, Y1, . . . , Yq be vector fields overM. Then

[X1 ∧ · · · ∧ Xp , Y1 ∧ · · · ∧ Yq ]

=
∑

(−1)t+sX1 ∧ · · · X̂s · · · ∧ Xp ∧ [Xs, Yt ] ∧ Y1 ∧ · · · Ŷt · · · ∧ Yq , (4.1)

where [ , ] is the SNB andX̂ stands for the omission ofX. It is easy to check that (4.1)
is equivalent to original definition [13, 14].

Theorem 4.1.Let M = G be the group manifold of a Lie group, and let the above vector
fields X , Y be left-invariant (LI) (right-invariant (RI)) vector fields onG. Then the SNB
of LI (RI) skew multivector fields is also LI (RI).

Proof. It suffices to recall that ifX is LI, LZX = [Z, X] = 0 whereZ is the generator of
the left translations. �

Definition 4.2. Let A ∈ ∧p(M) and B ∈ ∧q(M), p, q 6 n, be thep- and q-vectors
(multivectors of orderp andq, respectively) given in a local chart by

A(x) = 1

p!
Ai1...ip (x)∂i1 ∧ · · · ∧ ∂ip , B(x) = 1

q!
Bj1...jq (x)∂j1 ∧ · · · ∧ ∂jq

. (4.2)
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The SNB ofA andB is the skew-symmetric contravariant tensor field [A, B] ∈ ∧p+q−1(M)

[A, B] = 1

(p + q − 1)!
[A, B]k1...kp+q−1∂k1 ∧ · · · ∧ ∂kp+q−1 ,

[A, B]k1...kp+q−1 = 1

(p − 1)!q!
ε

k1...kp+q−1

i1...ip−1j1...jq
Aνi1...ip−1∂νB

j1...jq

+ (−1)p

p!(q − 1)!
ε

k1...kp+q−1

i1...ipj1...jq−1
Bνj1...jq−1∂νA

i1...ip ,

(4.3)

whereε is the antisymmetric Kronecker symbol

ε
i1...ip
j1...jp

= det


δ

i1
j1

· · · δ
i1
jp

...
...

δ
ip
j1

· · · δ
ip
jp

 . (4.4)

The SNB is graded-commutative:

[A, B] = (−1)pq [B, A] . (4.5)

As a result, the SNB is identically zero ifA = B are of odd order (or evendegree;
degree(A) ≡ order(A) − 1). It satisfies the graded Jacobi identity

(−1)pr [[A, B], C] + (−1)qp [[B, C], A] + (−1)rq [[C, A], B] = 0 , (4.6)

where(p, q, r) denote the order of(A, B, C), respectively (thus, if3 is of even order and
[3, 3] = 0 it follows from (4.6) that [3, [3, C]] = 0).

Let A ∧ B ∈ ∧p+q(M),

(A ∧ B) = 1

(p + q)!
(A ∧ B)i1...ip+q ∂i1 ∧ · · · ∧ ∂ip+q

,

(A ∧ B)i1...ip+q = 1

p!q!
ε

i1...ip+q

j1...jp+q
Aj1...jpBjp+1...jp+q ,

(4.7)

and letα ∈ ∧p+q−1(M) be an arbitrary(p+q−1)-form, α = (1/(p+q−1)!)αi1...ip+q−1dxi1 ∧
· · · ∧ dxip+q−1. Then the well known formula for one-forms and vector fields,dω(X, Y ) =
LXω(Y ) − LY ω(X) − i[X,Y ]ω , generalizes to

iA∧Bdα = (−1)pq+q iAd(iBα) + (−1)piBd(iAα) − i[A,B]α , (4.8)

where the contractioniAα is the(q − 1)-form

iAα(·) = 1

p!
α(A, ·) , iAα = 1

(q − 1)!

1

p!
Ai1...ipαi1...ipj1...jq−1dxj1 ∧ · · · ∧ dxjq−1 , (4.9)

so that, on forms,iBiA = iA∧B . Whenα is closed, equation (4.8) provides a definition of
the SNB throughi[A,B]α.

From the definition of the SNB it follows that

[A, B ∧ C] = [A, B] ∧ C + (−1)(p−1)qB ∧ [A, C] , (4.10)

[A ∧ B, C] = (−1)pA ∧ [B, C] + (−1)rq [A, C] ∧ B . (4.11)

In particular, for the case of the SNB between the wedge products of twovector fields

[A ∧ B, X ∧ Y ] = −A ∧ [B, X] ∧ Y + B ∧ [A, X] ∧ Y − B ∧ [A, Y ] ∧ X

+ A ∧ [B, Y ] ∧ X , (4.12)
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so that

[A ∧ B, A ∧ B] = −2A ∧ B ∧ [A, B] . (4.13)

For instance, if3 is given by (3.9), we may apply (4.12) to find that the condition [3, 3] = 0
leads to the Jacobi identity.

Remark. It is worth mentioning that the SNB is the unique (up to a constant) extension
of the usual Lie bracket of vector fields (see also theorem 4.1) which makes aZ2-graded
Lie algebra of the (graded-)commutative algebra of skew-symmetric contravariant tensors:
degree([A, B]) = degree(A) + degree(B). In it, the adjoint action is a graded derivation
with respect to the wedge product [21] (see equation (4.10)). To make this graded structure
explicit, it is convenient to define a new SNB, [, ]′, which differs from the original one
[ , ] by a factor(−1)p+1 on the right-hand side of (4.1), (4.3):

[A, B]′ := (−1)p+1[A, B] . (4.14)

This definition modifies (4.5) to read

[A, B]′ = −(−1)(p−1)(q−1)[B, A]′ ≡ −(−1)ab[B, A]′ (4.15)

wherea = degree(A) = (p − 1), etc. Similarly, equation (4.6) is replaced by

(−1)pr+q+1[[A, B]′, C]′ + (−1)qp+r+1[[B, C]′, A]′ + (−1)rq+p+1[[C, A]′, B ′] = 0 , (4.16)

which in terms of the degrees(a, b, c) of A, B, C adopts the graded JI form

(−1)ac[[A, B]′, C]′ + (−1)ba[[B, C]′, A]′ + (−1)cb[[C, A]′, B ′] = 0 . (4.17)

The definition (4.14) is used in [17–19, 21] and more adequately stresses the graded structure
of the exterior algebra of skew multivector fields; for instance, equations (4.15) and (4.17)
have the same form as in supersymmetry (see, e.g., [22]). In this paper, however, we shall
use definition 4.2 for the SNB, as in [8, 10, 14] and others.

Definition 4.3. A bivector 3 ∈ ∧2(M) is called aPoisson bivectorand defines a PS onM
(and a Poisson bracket onF(M) × F(M)) if it commutes with itself under the SNB

[3, 3] = 0 (4.18)

(for the case of linear PS this is equivalent to the classical Yang–Baxter equation). Two
Poisson bivectors31, 32 are calledcompatibleif the SNB between themselves is zero,

[31, 32] = 0 . (4.19)

The compatibility condition is equivalent to requiring that any linear combinationλ31+µ32

be a Poisson bivector.

5. Generalized Poisson structures

Since equations (2.1) and (2.2) are automatic for a bivector field, the only stringent condition
that a 3 ≡ 3(2) defining a PS must satisfy is the Jacobi identity (2.3) or, equivalently,
(4.18). It is then natural to consider generalizations of the standard PS in terms of 2p-ary
operations determined by skew-symmetric 2p-vector fields3(2p), the casep = 1 being the
standard one. Since the SNB vanishes identically if3′ is of odd order (equation (4.5)),
only [3′, 3′] = 0 for 3′ of even order (odddegree) will be non-empty.

Having this in mind, let us first introduce the generalized Poisson bracket (GPB).
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Definition 5.1.A generalized Poisson bracket{·, ·, . . . , ·, ·} onM is a mappingF(M)× 2p· · ·×
F(M) → F(M) assigning a function{f1, f2, . . . , f2p} to every setf1, . . . , f2p ∈ F(M)

which is linear in all arguments and satisfies the following conditions:
(a) complete skew-symmetry infj ;
(b) Leibniz rule: ∀fi, g, h ∈ F(M),

{f1, f2, . . . , f2p−1, gh} = g {f1, f2, . . . , f2p−1, h} + {f1, f2, . . . , f2p−1, g}h ; (5.1)

(c) generalized Jacobi identity:∀fi ∈ F(M),

1

(2p − 1)!

1

(2p)!
Alt {f1, f2, . . . , f2p−1, {f2p, . . . , f4p−1}} = 0 . (5.2)

Conditions (a) and (b) imply that our GPB is given by a skew-symmetric multiderivative,
i.e. by a completely skew-symmetric 2p-vector field 3(2p) ∈ ∧2p(M). Condition (5.2)
(different from the generalization in [1, 6]) will be called thegeneralized Jacobi identity
(GJI); for p = 2 it contains 35 terms† (C2p−1

4p−1 in the general case). It may be rewritten
as [3(2p), 3(2p)] = 0 which, due to (4.5), is not identically zero and gives a non-trivial
condition; 3(2p) defines a GPB. We shall see in section 8 that in the linear case our
generalized PS are automatically obtained fromconstantskew-symmetric tensors of order
2p + 1. Clearly, the above relations reproduce the ordinary case (2.1)–(2.3) forp = 1. The
compatibility condition in definition 4.3 may be now extended in the following sense: two
GPS3

(2p)

1 and3
(2q)

2 onM are calledcompatibleif they ‘commute’, i.e. if [3(2p)

1 , 3
(2q)

2 ] = 0
(of course, ifp 6= q the sum of3(2p)

1 and3
(2q)

2 is not defined).
In local coordinates the GPB has the form

{f1(x), f2(x), . . . , f2p(x)} = ωj1j2...j2p
(x)∂j1f1 ∂j2f2 · · · ∂j2pf2p (5.3)

whereωj1j2...j2p
are the coordinates of a completely skew-symmetric tensor which, as a result

of (5.2), satisfies

Alt (ωj1j2...j2p−1k ∂k ωj2p...j4p−1) = 0 . (5.4)

† Explicitly, the p = 2 GJI has the form

{f1, f2, f3, {f4, f5, f6, f7}} − {f4, f2, f3, {f1, f5, f6, f7}} − {f1, f4, f3, {f2, f5, f6, f7}}
−{f1, f2, f4, {f3, f5, f6, f7}} − {f5, f2, f3, {f4, f1, f6, f7}} − {f1, f5, f3, {f4, f2, f6, f7}}
−{f1, f2, f5, {f4, f3, f6, f7}} − {f6, f2, f3, {f4, f5, f1, f7}} − {f1, f6, f3, {f4, f5, f2, f7}}
−{f1, f2, f6, {f4, f5, f3, f7}} − {f7, f2, f3, {f4, f5, f6, f1}} − {f1, f7, f3, {f4, f5, f6, f2}}
−{f1, f2, f7, {f4, f5, f6, f3}} + {f4, f5, f3, {f1, f2, f6, f7}} + {f4, f2, f5, {f1, f3, f6, f7}}
+{f1, f4, f5, {f2, f3, f6, f7}} + {f4, f6, f3, {f1, f5, f2, f7}} + {f4, f2, f6, {f1, f5, f3, f7}}
+{f1, f4, f6, {f2, f5, f3, f7}} + {f4, f7, f3, {f1, f5, f6, f2}} + {f4, f2, f7, {f1, f5, f6, f3}}
+{f1, f4, f7, {f2, f5, f6, f3}} + {f5, f6, f3, {f4, f1, f2, f7}} + {f5, f2, f6, {f4, f1, f3, f7}}
+{f1, f5, f6, {f4, f2, f3, f7}} + {f5, f7, f3, {f4, f1, f6, f2}} + {f5, f2, f7, {f4, f1, f6, f3}}
+{f1, f5, f7, {f4, f2, f6, f3}} + {f6, f7, f3, {f4, f5, f1, f2}} + {f6, f2, f7, {f4, f5, f1, f3}}
+{f1, f6, f7, {f4, f5, f2, f3}} − {f4, f5, f6, {f1, f2, f3, f7}} − {f4, f5, f7, {f1, f2, f6, f3}}
−{f4, f6, f7, {f1, f5, f2, f3}} − {f5, f6, f7, {f4, f1, f2, f3}} = 0 .



8000 J A de Azc´arraga et al

Definition 5.2. A skew-symmetric 2p-vector field3(2p) ∈ ∧(2p)(M), locally written as

3(2p) = 1

(2p)!
ωj1...j2p

∂j1 ∧ · · · ∧ ∂j2p , (5.5)

defines a generalized Poisson structure iff[3(2p), 3(2p)] = 0, which reproduces
equation (5.4).

6. Generalized dynamics

Let us now introduce a dynamical system associated with the above generalized Poisson
structure. Namely, let us fix a set of(2p − 1) ‘Hamiltonian’ functionsH1, H2, . . . , H2p−1.
The time evolution ofxj , f ∈ F(M) is defined by

ẋj = {H1, . . . , H2p−1, xj } , ḟ = {H1, . . . , H2p−1, f } . (6.1)

Definition 6.1. The Hamiltonian vector fieldassociated with the(2p − 1) Hamiltonians
H1, . . . , H2p−1 is defined byXH1,...,H2p−1 = idH1∧···∧dH2p−13. Thus,

(idH1∧···∧dH2p−13)j = 1

(2p − 1)!
3(dH1 ∧ · · · ∧ dH2p−1, dxj )

= 3(dH1, . . . , dH2p−1, dxj ) ;
XH1,...,H2p−1 = ωi1...i2p−1j ∂

i1H1 · · · ∂i2p−1H2p−1∂
j .

(6.2)

Definition 6.2. The generalized Hamiltonian systemis defined by the equation

ẋj = Xj = (XH1,...,H2p−1)j = ωi1...i2p−1j ∂
i1H1 · · · ∂i2p−1H2p−1 . (6.3)

Then ḟ = XH1,...,H2p−1 · f (= ẋj ∂f/∂xj ) is given by (6.1).

Definition 6.3. A function f ∈ F(M) is a constant of the motionif (6.1) is zero.

Due to the skew-symmetry of the GPB, the Hamiltonian functionsH1, . . . , H2p−1 are
all constants of the motion but the system may have additional onesh2p, . . . , hk ; k > 2p.

Definition 6.4. A set of functions(f1, . . . , fk) , k > 2p is in involution if the GPB vanishes
for any subset of 2p functions.

Let us also note the following generalization of the Poisson theorem [23].

Theorem 6.1. Let f1, . . . , fq , q > 2p be such that the set of functions(H1, . . . ,

H2p−1, fi1, . . . , fi2p−1) is in involution (this implies, in particular, that thefi , i = 1, . . . , q

are constants of motion). Then the quantities{fi1, . . . , fi2p
} are also constants of motion.

Definition 6.5. A set of k functionsc1(x), . . . , ck(x) (1 6 k 6 2p − 1) will be called a
set of k Casimir functionsif {g1, g2, . . . , g2p−k, c1, . . . , ck} = 0 for any set of functions
(g1, g2, . . . , g2p−k).

If one of the Hamiltonians(H1, . . . , H2p−1) is a Casimir function, then the generalized
dynamics defined by (6.1) is trivial. Also, if the set of Hamiltonians contains a Casimir
subset, the generalized dynamics will also be trivial (note that ifH1 and H2 constitute
each a Casimir subset, the two Hamiltonians(H1, H2) will also constitute another, but the
reciprocal situation may not be true).

Each Casimirk-subset (c1(x), . . . , ck(x)) determines invariant submanifolds ofM
through the conditionsci(x) = ci (i = 1, . . . , k). The maximalK-subset determines an
invariant submanifold ofM of minimal dimension, dimM − K, which we may call phase
space. Using now the notion of support of anm-skew multivector [24] as the subspace of
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the space of vector fields generated by the contraction of the multivector with an arbitrary
(m − 1)-form, we make the following conjecture.

Conjecture. The tangent space to the phase space at a pointx ∈ M is the support of3(x)

at that point.

Remark. It is well known that the standard Jacobi identity betweenf1 , f2 and H is
equivalent tod{f1, f2}/dt = {ḟ1, f2} + {f1, ḟ2}; thus, d/dt is a derivation of the PB.
The ‘fundamental identity’ for Nambu mechanics [1] and its further extensions [6] also
corresponds to the existence of a vector fieldDH1...Hk−1 which is a derivation of the Nambu
bracket. In contrast, the vector field (6.3) above is not a derivation of our GPB. It should
be noted, however, that having an evolution vector field which is a derivation of a PB is an
independent assumption of the associated dynamics and not a necessary one. Nevertheless,
the following theorem holds.

Theorem 6.2. Let H1, . . . , H2p−1 be the ‘Hamiltonians’ governing the time evolution
by (6.1) and let f1, . . . , f2p a set of 2p functions such that any subset(fi1, fi2,

. . . , fi2p−1, Hj1, . . . , Hj2p−2) is in involution. Then

d

dt
{f1, . . . , f2p} = {ḟ1, f2, . . . , f2p} + · · · + {f1, . . . , f2p−1, ḟ2p} . (6.4)

Proof. It suffices to check that (6.1) in (6.4) leads to an identity on account of the generalized
Jacobi identity (5.2). For the casep = 2, for instance, the condition of the theorem (see
the previous footnote) states that any GPB involving two Hamiltonians and two functions
or one Hamiltonian and three functions is zero.

Example. It is well known that Euler’s equations describing the free motion of a rigid body
around a fixed point are Hamiltonian,ẋi = {H, xi}, whereH ∝ a1x

2
1 + a2x

2
2 + a3x

2
3 (where

ai are the principal moments of the body) and the (linear) PS is defined by{xi, xj } = ε k
ij xk

so thatẋj ∝ ε k
ij ∂iHxk, i, j, k = 1, 2, 3. The extension of this situation to the motion in a

(2p + 1)-dimensional space provides an example of our GPS. Let the evolution equations
be given in terms of(2p − 1) HamiltoniansH1, . . . , H2p−1 (the above case corresponds to
p = 1) by

ẋj = εi1...i2p−1jk∂
i1H1 · · · ∂i2p−1H2p−1x

k , i, j, k = 1, . . . , 2p + 1 . (6.5)

These equations have the Hamiltonian form (6.1) if the PS is the linear one defined by†
{xi1, xi2, . . . , xi2p

} = εi1...i2pkx
k ≡ ωi1...i2p

(x) . (6.6)

Due to the form ofωi1...i2p
(x), it is clear that the GJI (5.4) is trivially fulfilled, since

it will always involve the antisymmetrization of repeated indices. Thus, equation (6.6)
defines a linear GPS reproducing (6.5); clearly the(2p − 1) Hamiltonians are constants
of the motion. As in the three-dimensional analogue, the function determining theS2p-
spherec2p = x2

1 + · · · + x2
2p+1 is a Casimir function (and a constant of motion). Indeed

(definition 6.5),

{f1, . . . , f2p−1, x
2
1 + · · · + x2

2p+1} = 2ωi1...i2p
∂i1f1 · · · ∂i2p−1f2p−1x

i2p (6.7)

which is zero for allf ’s on account of (6.6). The trajectory is thus the intersection of the
surfacesHl = constant(l = 1, . . . , 2p − 1) andc2p = constant.

† It is worth mentioning that the completely antisymmetric tensor of order(n+1) in a (n+1)-dimensional vector
space gives rise [25] to a Nambu tensorεi1...inin+1x

in+1 of ordern (i.e. a tensor satisfying the ‘fundamental identity’
of Nambu mechanics [6]), so thatωi1...i2p

(x) above is also a Nambu tensor.
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Equations (6.5) are not quadratic inxi in general and so they do not coincide with
the standard Euler equations for the rotation of a higher dimensional rigid body. They
become quadratic whenH1, . . . , H2p−2 are linear andH2p−1 is a quadratic function of
the coordinates, but in this case they reduce to the standard Euler equations in the three-
dimensional space determined by the intersection of theHi = constant (i = 1, . . . , 2p − 2)
hyperplanes.

7. Generalized Poisson structures and differential forms

Let us now rewrite some of the previous expressions in terms of differential forms. First
we associate(n − k)-forms α with k-skew-symmetric contravariant tensor fields3 on an
n-dimensional orientable manifoldM by setting

α3 = i3µ , (7.1)

whereµ stands for a volume form onM (hence,α3 depends on the choice of the volume
form µ). The mapping9 : 3 7→ α3 yields an isomorphism betweenk-skew multivectors
and(n−k)-forms. For a3 given by the exterior product ofk vector fields3 = X1∧· · ·∧Xk

(see equation (4.9)),

(i3µ)(Y1, . . . , Yn−k) = µ(X1, . . . , Xk, Y1, . . . , Yn−k) . (7.2)

Locally, if for example3 = 1
2ωij ∂i ∧ ∂j andµ = dx1 ∧ · · · ∧ dxn, equation (7.2) gives

α3 =
∑
i<j

(−1)i+j+1ωijdx1 ∧ · · · d̂xi · · · d̂xj · · · ∧ dxn , (7.3)

whered̂xi stands for the omission ofdxi .
For vector fieldsX, Y ,

i[X,Y ] = iXdiY − iY diX + iXiY d − diX∧Y . (7.4)

Similarly, for two bivector fields31, 32,

i[31,32] = i31di32 + i32di31 − i31i32d − di31∧32 . (7.5)

In general, for any two skew-symmetric multivectorsA, B of order p, q acting on forms
we have†
i[A,B] = (−1)pq+q iAdiB + (−1)piBdiA − (−1)pqiAiBd − (−1)p+qdiA∧B , (7.6)

from which we find that (7.5) remains valid for any two skew-symmetric multivectors31

and 32 of even order (on a(p + q − 1)-form α, equation (7.6) reduces to (4.8) since
A ∧ B ∈ ∧p+q). Equation (7.5) now leads to the following theorem which generalizes that
in [17] to the arbitrary even-order case:

Theorem 7.1.A 3 defines a GPS if and only if

2i3dα3 = dα3∧3 . (7.7)

Two GPS31, 32 are compatible if and only if

dα31∧32 = i31dα32 + i32dα31 . (7.8)

† Equation (7.6) is to be compared with the standard formula for vector fieldsi[X,Y ] = [LX, iY ] = iXdiY −iY diX +
iXiY d + diXiY to which it reduces forp = 1 = q (on forms, iAiB = (−1)pq iB iA and iA∧B = (−1)pq iB∧A =
(−1)pq iAiB ). One could introduce a Lie ‘derivative’LA with respectA ∈ ∧p(M) and rewrite (7.6) in a form similar
to the vector field case, namelyi[A,B] = [[LA, iB ]], whereLA := iAd + (−1)p+1diA (LA : ∧n → ∧n−p+1 and thus
it is a derivative only ifA is a vector field) and the bracket [[, ]] is defined by [[LA, iB ]] := (−1)q(p+1)LAiB −iBLA.
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The isomorphism defined by9 suggests that it should be composed in terms of the
differential operatorsd, LX, iX available on forms, so that the properties of the Schouten
bracket can be stated in terms of differential forms. As is well known, we have

LXµ = div(X)µ = diXµ , (7.9)

d(iX∧Y µ) = i[Y,X]µ + iXdiY µ − iY diXµ . (7.10)

Thus, definingD = 9−1 ◦ d ◦ 9, for the vector fieldsX, Y we get

D(X) = div(X) , (7.11)

D(X ∧ Y ) = − div(X)Y + X div(Y ) − [X, Y ] . (7.12)

For contravariant, skew-symmetric tensor fields31, 32 of arbitrary even order we obtain

D(31 ∧ 32) = D(31) ∧ 32 + 31 ∧ D(32) − [31, 32] , (7.13)

and in the general case we have

D(A ∧ B) = (−1)qD(A) ∧ B + A ∧ D(B) − (−1)p+q [A, B] . (7.14)

Hence we conclude that if3 is of arbitrary even order and defines a GPS,

D(3 ∧ 3) = 23 ∧ D(3) . (7.15)

We may call a GPS3 closed if D(3) = 0 (which impliesD(3 ∧ 3) = 0). This is clearly
equivalent to the fact that the formα3 (and henceα3∧3) is closed. As mentioned, this
definition depends onµ so that ifµ is replaced byf µ, 3 may no longer be closed.

8. The Schouten–Nijenhuis bracket, GPS and cohomology

Let 3(2p) be a (2p)-skew-symmetric multivector defining a GPS as in definition 5.2.
Using equation (4.6) it follows that the mappingδ3(2p) : B 7→ [3, B] , δ3(2p) : ∧q(M) →
∧2p+q−1(M) is nilpotent since [3, [3, B]] = 0. We then have the following theorem.

Theorem 8.1.Let a GPS be defined by3(2p). The mappingδ3(2p) : B 7→ [3, B] is nilpotent,
δ2
3(2p) = 0. The operatorδ3(2p) satisfies (see equations (4.10), (4.6))

δ3(2p) (B ∧ C) = (δ3(2p)B) ∧ C + (−1)qB ∧ (δ3(2p)C) (8.1)

δ3(2p) [B, C] = −[δ3(2p)B, C] − (−1)q [B, δ3(2p)C] . (8.2)

As a result,δ3(2p) defines an odd degree cohomology operator; the resulting cohomology
will be calledgeneralized Poisson cohomology. In particular, forp = 1, δ3(2) : ∧q(M) →
∧q+1(M) defines the standard Poisson cohomology [8]; see also [21].

Let us now turn to linear GPS. LetG be the Lie algebra of a simple compact groupG.
In this case the de Rham cohomology ring on the group manifoldG is the same as the Lie
algebra cohomology ringH ∗

0 (G, R) for the trivial action. In its Chevalley–Eilenberg version
[26] the Lie algebra cocycles are represented by bi-invariant (i.e. left- and right-invariant
and hence closed) forms onG (see also, e.g., [27]). The linear standard PS defined by
(3.4) is associated (see [11]) with a non-trivial three-cocycle onG and [3(2), 3(2)] = 0
(equation (3.5)) is precisely the cocycle condition. This indicates that the linear generalized
Poisson structures onG∗ may be found by looking for higher-order Lie algebra cocycles.
Let us now show that each of them provides a GPS.

The cohomology ring of any simple Lie algebra of rankl is a free ring generated by
l (primitive) forms onG of odd degree(2m − 1). These forms are associated with thel
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primitive symmetric invariant tensorski1...im of orderm which may be defined onG and of
which the Killing tensorki1i2 is just the first example (and thusH 3

0 (G, R) 6= 0 for any simple
Lie algebra). As a result, it is possible to associate a(2m−2) skew-symmetric contravariant
primitive tensor field linear inxj to each symmetric invariant polynomialki1...im of orderm.
The casem = 2 leads to the3(2) of (3.4), (3.9). For theAl series(su(l + 1)), for instance,
these forms have order 3, 5, . . . , (2l + 1); other orders (but always including 3) appear for
the different simple algebras (see, e.g., [27]). Let{ei} be a basis ofG. The bi-invariance
condition

q∑
s=1

ω(ei1, . . . , [el, eis ], . . . , eiq ) = 0 (8.3)

reads, in terms of the coordinatesωi1...iq = ω(ei1, . . . , eiq ) of the skew-symmetric tensorω
on G (or, equivalently, LIq-form ω on G),

Cα
li1

ωαi2...iq + Cα
li2

ωi1αi3...iq + · · · + Cα
liq

ωi1...iq−1α = 0

q∑
s=1

C
ρ

νis
ωi1...îsρ...iq

= 0 .
(8.4)

The bi-invariance condition may also be expressed as

ε
j1...jq

i1...iq
C

ρ

νj1
ωρj2...jq

= 0 , (8.5)

on account of the skew-symmetry ofω. Using the Killing metric this leads to

ε
j1...jq

i1...iq
Cν

j1ρ
ω

ρ

j2...jq
= 0 . (8.6)

Let ω be a Lie algebraq-cochain (i.e. a skew-symmetricq-tensor onG or LI q-form
on G). The coboundary operator for the Lie algebra cohomology is given by the following
definition.

Definition 8.1a (coboundary operator).

(sω)(ei1, . . . , eiq+1) :=
q+1∑
s,t=1
s<t

(−1)s+tω([eis , eit ], ei1, . . . , êis , . . . , êit , . . . , eiq+1) , ei ∈ G.

(8.7)

Thus, in coordinates,

(sω)i1...iq+1 =
q+1∑
s,t=1
s<t

(−1)s+tC
ρ

is it
ωρi1...îs ...̂it ...iq+1

= 1

2

q+1∑
s,t=1
s<t

(−1)s+t ε
j1j2
is it

C
ρ

j1j2
ωρi1...îs ...̂it ...iq+1

= 1

2

q+1∑
s,t=1
s<t

(−1)s+t ε
j1j2
is it

C
ρ

j1j2

1

(q − 1)!
ε

j3...jq+1

ρi1...îs ...̂it ...iq+1
ωρj3...jq+1

= −1

2

1

(q − 1)!
C

ρ

j1j2
ωρj3...jq+1

q+1∑
s,t=1
s<t

(−1)s+t+1ε
j1j2
is it

ε
j3...jq+1

ρi1...îs ...̂it ...iq+1
. (8.8)



The Schouten–Nijenhuis bracket 8005

This provides the equivalent definition:

Definition 8.1b. The action of the coboundary operator on aq-cochainω is given by

(sω)i1...iq+1 = −1

2

1

(q − 1)!
ε

j1...jq+1

i1...iq+1
C

ρ

j1j2
ωρj3...jq+1 ; sω = 0 for q > r = dimG . (8.9)

As is well known, the invariance condition (8.3) determines a Lie algebra cocycle since,
for each fixedj1, the antisymmetric sum overj2, . . . , jn is zero on account of (8.3). The
Poisson structure (3.8) is associated to the structure constants and hence to a three-cocycle.
In order to obtain more general structures, we need the expression of the(2m − 1)-cocycle
associated with an orderm symmetric tensor onG. This is done in two steps, the first of
which is provided by the following lemma.

Lemma 8.1.Let ki1...im be an invariant symmetric polynomial onG and

ω̃ρj2...j2m−2σ := ki1...im−1σC
i1
ρj2

· · ·Cim−1
j2m−3j2m−2

. (8.10)

Then the odd-order(2m − 1)-tensor

ωρl2...l2m−2σ := ε
j2...j2m−2
l2...l2m−2

ω̃ρj2...j2m−2σ (8.11)

is a fully skew-symmetric tensor†.

Proof. For m = 2, the skew-symmetry ofωρj2σ = ki1σC
i1
ρj2

is obvious. In general,

ε
j2...j2m−2
l2...l2m−2

ω̃ρj2...j2m−2σ = ε
j2...j2m−2
l2...l2m−2

ki1...im−1σC
i1
ρj2

· · ·Cim−1
j2m−3j2m−2

= ε
j2...j2m−2
l2...l2m−2

[
m−1∑
s=2

kρi2...îs i1...im−1σ
C

i1
j2is

+ kρi2...im−1i1C
i1
j2σ

]
C

i2
j3j4

· · ·Cim−1
j2m−3j2m−2

= ε
j2...j2m−2
l2...l2m−2

kρi2...im−1i1C
i1
j2σ

C
i2
j3j4

· · ·Cim−1
j2m−3j2m−2

= − ε
j2...j2m−2
l2...l2m−2

ki1i2...im−1ρC
i1
σj2

· · ·Cim−1
j2m−3j2m−2

= −ε
j2...j2m−2
l2...l2m−2

ω̃σj2...j2m−2ρ ,

where the invariance of the symmetric tensork has been used in the second equality, the
Jacobi identity in the third and the symmetry ofk in the fourth. Sinceωρj2...j2m−2σ is skew-
symmetric in(ρ, σ ) it follows that ωi1...i2m−1 is a fully skew-symmetric tensor. �

We may then state the following theorem.

Theorem 8.2.The skew-symmetric tensorωi1...i2m−1 on G (or LI (2m − 1)-form on G) of
(8.11) is a(2m − 1)-cocycle for the Lie algebra cohomology.

Proof. Applying equation (8.9) to (8.11) and using (8.10), it follows that

(sω)ii ...i2m
= − 1

2(2m − 2)!
ε

j1...j2m

i1...i2m
C

ρ

j1j2
ε

s3...s2m−1
j3...j2m−1

kl1l2...lm−1j2m
Cl1

ρs3
· · ·Clm−1

s2m−2s2m−1

= − (2m − 3)!

2(2m − 2)!
ε

j1j2s3...s2m−1j2m

i1...i2m
C

ρ

j1j2
Cl1

ρs3
· · ·Clm−1

s2m−2s2m−1
kl1l2...lm−1j2m

= 0

by the Jacobi identity (3.5) in the two first structure constants (indicesj1, j2, s3). �
† The origin of (8.11) follows from the fact that given a symmetric invariant polynomialki1...im onG, the associated
skew-symmetric multilinear tensorωi1...i2m−1 is

ω(ei1, . . . , ei2m−1) =
∑

s∈S(2m−1)

π(s) k([es(i1), es(i2)], [es(i3), es(i4)], . . . , [es(i2m−3), es(i2m−2)], es(i2m−1))

whereπ(s) is the parity sign of the permutations ∈ S(2m−1).
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Lemma 8.2.Let ωi1...iq , q odd, be an skew-symmetric tensor associated with an invariant
symmetric polynomial as above. Then

ε
j1...jq

i1...iq
C

ρ

j1j2
ωρj3...jqν = 0 . (8.12)

Proof. By equations (8.11) and (8.10)

1

(q − 2)!
ε

j1...jq

i1...iq
C

ρ

j1j2
ε

l3...lq
j3...jq

ω̃ρl3...lq ν = ε
j1j2l3...lq
i1...iq

C
ρ

j1j2
C

s1
ρl3

· · ·Csp
lq−1lq

ks1...spν

wherep = (q − 1)/2, which is zero on account of the Jacobi identity forj1, j2, l3. �
The possible cocycles on the different simple Lie algebras are determined by the

symmetric invariant polynomials that may be defined on them, which in turn are in
one-to-one correspondence with the non-trivial de Rham cocycles, which exist on the
corresponding compact group manifolds. Using the above constructions, we may now
introduce higher-order (> 2) contravariant skew-symmetric tensors which have zero SNB
between themselves.

Let us now apply the results of section 8 to compute the SNB of two contravariant
skew-symmetric tensors� and�′ obtained from Lie algebra cocycles,

� := 1

p!
ωii ...ip

αxα∂i1 ∧ · · · ∧ ∂ip , �′ := 1

q!
ω′

ji ...jq

α
xα∂j1 ∧ · · · ∧ ∂jq , (8.13)

wherexα ∈ G∗. Using the Killing metric to raise and lower indices, equation (4.3) gives

[�, �′]i1...ip+q−1 =
{

1

(p − 1)!q!
ε

j1...jp+q−1

i1...ip+q−1
ωνj1...jp−1αω′

jp...jp+q−1

ν

+ (−1)p

p!(q − 1)!
ε

j1...jp+q−1

i1...ip+q−1
ω′

νjp+1...jp+q−1α
ωj1...jp

ν

}
xα . (8.14)

We now state the theorem which gives all the linear GPS on simple Lie algebras.

Theorem 8.3.Let G be a simple compact† algebra, and letω andω′ be two non-trivial Lie
algebra(p + 1)- and (q + 1)-cocycles obtained from the associatedp/2 + 1 andq/2 + 1
invariant symmetric tensors onG. Then the associated skew-symmetric contravariant vector
fields � and�′ have zero SNB.

Proof. Since both� ∈ ∧p(G) , �′ ∈ ∧q(G) in (8.14) have arbitrary even order, both
terms have the same structure. It is thus sufficient to check that one of them is zero. By
equations (8.10) and (8.11) the first term gives

ε
j1...jp+q−1

i1...ip+q−1
ωνj1...jp−1αω′

jp...jp+q−1

ν

= ε
j1...jp+q−1

i1...ip+q−1
ε

l1...lp−1

j1...jp−1
C

s1
νl1

. . . C
sp/2

lp−2lp−1
ks1...sp/2αω′

jp...jp+q−1

ν

= (p − 1)!ε
l1...lp−1jp...jp+q−1

i1...ip+q−1
C

s1
νl1

. . . C
sp/2

lp−2lp−1
ks1...sp/2αω′

jp...jp+q−1

ν = 0 , (8.15)

which, using (8.6) in the last equality, is zero. �
Since all the even-order skew-symmetric multivector fields� associated with the odd-

order Lie algebra cocycles have zero SNB between themselves we find the following
corollary.

† Note. The requirement of compactness is introduced to have a definite Killing–Cartan metric which then may
be taken as the unit matrix; this is convenient to identify upper and lower indices.
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Corollary 8.1. Let G be a simple compact algebra, and letki1...im be a primitive invariant
symmetric polynomial of orderm. Then the tensorωρl2...l2m−2σ

�(2m−2) = 1

(2m − 2)!
ωl1...l2m−2

σ xσ ∂l1 ∧ · · · ∧ ∂l2m−2 , (8.16)

obtained from the cocycle (8.11), defines a linear GPS onG. In particular (cf equation (3.1))

{xi1, xi2, . . . , xi2m−2} = ωi1...i2m−2
σ xσ , (8.17)

whereωi1...i2m−2
σ are the ‘structure constants’ defining the Lie algebra(2m − 1)-cocycle.

Let � be as in equation (8.13) and such that it defines a linear GPS. Then we have the
following lemma.

Lemma 8.3.The operator∂� : ∧q(G) → ∧q+p−1(G) defined by

(∂�B)i1...ip+q−1 = 1

p!

1

(q − 1)!
ε

j1...jp+q−1

i1...ip+q−1
ωj1...jp

νBνjp+1...jp+q−1 , (8.18)

where �(2p) is an even skew-symmetric contravariant tensor defining a linear GPS, is
nilpotent,∂2

� = 0.

Proof. From the definition (8.18) of∂�,

(∂2
�B)i1...i2p+q−2 = 1

p!(p + q − 2)!
ε

j1...j2p+q−2

i1...i2p+q−2
ωj1...jp

ν

×
(

1

p!(q − 1)!
ε

k1...kp+q−1

νjp+1...j2p+q−2
ωk1...kp

σBσkp+1...kp+q−1

)

= 1

(p!)2(p + q − 2)!(q − 1)!

p+q−1∑
s=1

(−1)s+1ε
j1...j2p+q−2

i1...i2p+q−2
ωj1...jp

ks

×ε
k1...̂ks ...kp+q−1

jp+1...j2p+q−2
ωk1...kp

σBσkp+1...kp+q−1

= 1

(p!)2(q − 1)!

[ p∑
s=1

(−1)s+1ε
j1...jpk1...̂ks ...kp+1...kp+q−1

i1...i2p+q−2
ωj1...jp

ks

+
p+q−1∑
s=p+1

(−)s+1ε
j1...jpk1...kp...̂ks ...kp+q−1

i1...i2p+q−2
ωj1...jp

ks

]
ωk1...kp

σBσkp+1...kp+q−1

= p

(p!)2(q − 1)!
ε

j1...jpk1...kp+q−2

i1...i2p+q−2
ωj1...jp

ρωρk1...kp−1
σBσkp...kp+q−2

+ (q − 1)

(p!)2(q − 1)!
ε

j1...jpk1...kp+q−2

i1...i2p+q−2
ωj1...jp

ρωk1...kp

σBσρkp+1...kp+q−2 = 0 , (8.19)

since in the last equality the first term is zero on account of (8.15), and the second one
vanishes sincep is even andB is skew-symmetric in(ρ, σ ). �

In view of the above lemma and equation (8.14), theorem 8.3 has the following corollary.

Corollary 8.2. If � and�′ (of even orderp andp′) define two linear GPS, their SNB may
be written as

[�, �′] = ∂��′ + ∂�′� .

In particular,∂�� = 0 since� is a cocycle for∂�.
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Let us remark that the linear GPS given by the Lie algebra cocycles provide explicit
examples of a non-decomposable (i.e. not given by the skew-symmetric product of single
vectors) GPS. In contrast, and as conjectured in [25], it has recently been shown [24] that
all Nambu-type PS are decomposable (see also [28] for more details on this point). As an
example of our theory consider the GPS which may be constructed onsu(3)∗ defined by

3(4) = 1

4!
ωi1i2i3i4

σ xσ

∂

∂xi1

∧ · · · ∧ ∂

∂xi4

, ωρi2i3i4σ := 1

2
ε

j2j3j4
i2i3i4

dk1k2σC
k1
ρj2

C
k2
j3j4

, (8.20)

where thedijk are the constants appearing in the anticommutator of the Gell–Mannλi

matrices,{λi, λj } = 4
3δij 13 + 2dijkλk. It may be checked explicitly that [3(4), 3(4)] = 0

(see [11] for details). Other examples may be given similarly.

9. Conclusions

In this paper we have established the mathematical basis of a new type of generalized
Poisson structures. From a physical point of view, a more detailed investigation of the
generalized Hamiltonian dynamics presented here and of its possible applications is needed;
clearly, one would like to have more examples besides the simple one provided in section 6.
From a mathematical point of view, the linear GPS are also interesting since, when applied
to the case of the simple Lie algebras as in the example above, they provide the equivalent
of the higher-order Lie algebras [29] which can be defined on any simple Lie algebra
associated with its non-trivial cohomology groups. This produces a set of examples (in fact,
infinitely many of them: l GPS foreach simple Lie algebra of rankl, of which the first
one is the standard Lie–Poisson structure (3.1) given by the structure constants†), which
illustrate our linear GPS in a non-trivial way. The corresponding higher-order simple Lie
algebras [29] are in turn special cases of the strongly homotopy Lie algebras (see [30] and
references therein) which have been found to be relevant in closed string theory (see, e.g.,
[31, 32]) and in connection with the Batalin–Vilkovisky antibracket. Nevertheless, more
work is needed to see whether the proposed GPS, which are very appealing by virtue of
their geometrical contents, also have some direct physical applications.

We conclude here by saying that our analysis could be extended to Lie superalgebras
and super-Poisson structures in general by using an appropriate graded version of the SNB.
To this end, one first needs a theory of skew graded ‘super-multivector’ algebras, which to
our knowledge is lacking [33]. All these are possible directions for further research.
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† This is in sharp contrast to the Nambu case, where only the structure constants ofsl(2, C) may serve as Nambu
tensors [25], since those of the other simple algebras do not satisfy the ‘fundamental identity’ (see also remark 1
in [6]). An interesting question is whether the set of linear GPS based on higher-order Lie algebras and those of
the type discussed in the example of section 6 (which trivially satisfy the GJI) constitute all the possible linear
GPS.
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[18] Cariñena J, Ibort A, Marmo G and Perelomov A M 1994 On the geometry of Lie algebras and Poisson

tensorsJ. Phys. A: Math. Gen.27 7425–49
[19] Alekseevsky D V and Perelomov A M 1995 Poisson brackets on Lie algebrasPreprint ESI 247 (J. Geom.

Phys.to appear)
[20] Kirillo v A A 1976 Local Lie algebrasRussian Math. Surveys31 55–75 (Uspekhi Math. Nauk.31 57–76)
[21] Koszul J L 1985 Crochet de Schouten–Nijenhuis et cohomologieAstérisque(hors śerie) 257–71
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